Topic 3 Conditionally Independent/Tangent Decoupling

Victor H. de la Peña

Professor of Statistics, Columbia University

Artificial Intelligence Institute for Advances in Optimization Georgia Institute of Technology 2024

1 Review of Tangent Decoupling

1 Review of Tangent Decoupling

э

At the beginning of this series, we briefly study the framework of tangent decoupling. In this lecture I provide more details of tangent decoupling.

Definition

Let $\{d_i\}$, $\{y_i\}$ be two sequences of random variables adapted to an increasing sequence of σ -fields $\{\mathcal{F}_i\}$. Then $\{d_i\}$ is said to be **tangent** to $\{y_i\}$ with respect to $\{\mathcal{F}_i\}$ if for all i, $\mathscr{L}(d_i|\mathcal{F}_{i-1}) = \mathscr{L}(y_i|\mathcal{F}_{i-1})$, i.e., the conditional distributions of d_i given \mathcal{F}_{i-1} and y_i given \mathcal{F}_{i-1} are the same.

Definition

A sequence of random variables $\{x_i\}$ is said to be **conditionally** symmetric if x_i is tangent to $-x_i$ w.r.t. $\{\mathcal{F}_i\}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

A sequence $\{y_i\}$ of random variables adapted to an increasing sequence of σ -field $\{\mathcal{F}_i\}$ contained in \mathcal{F} is said to be **conditionally independent (CI)** if there exists a σ -algebra \mathcal{G} contained in \mathcal{F} such that $\{y_i\}$ is conditionally independent given \mathcal{G} and $\mathcal{L}(y_i|\mathcal{F}_{i-1}) = \mathcal{L}(y_i|\mathcal{G})$.

Definition

Let $\{d_i\}$ be an arbitrary sequence of random variables, then a conditionally independent sequence $\{y_i\}$ which is also tangent to $\{d_i\}$ will be called a **decoupled** version of $\{d_i\}$.

Proposition (KWAPIEŃ & WOYCZYŃSKI)

For any sequence of random variables $\{d_i\}$ one can find a decoupled sequence $\{y_i\}$ (on a possibly enlarged probability space) which is tangent to the original sequence and in addition conditionally independent given a master σ -field \mathcal{G} . Frequently $\mathcal{G} = \sigma(\{d_i\})$. More precisely, given $\{d_i\}$, we can construct a tangent sequence w.r.t. $\mathcal{F}_i = \sigma(d_1, ..., d_i)$ (de la Peña [1]):

- First, we take d_1 and y_1 to be two independent copies of the same random mechanism.
- With (d₁,..,d_{i-1}), the i-th pair of variables d_i and y_i comes from conditionally independent copies of the same random mechanism given F_{i-1}.
- And y_i 's are conditionally independent w.r.t. = \mathcal{F}_n .

de la Peña

э

Image: A matrix

Example: Simple Sampling

Consider drawing a sample of size *n* from a box with *N* balls $\{b_1, ..., b_N\}$, $0 < n \le N < \infty$. The sequence $\{d_i\}_{i=1}^n$ will represent a sample without replacement. In obtaining a conditionally independent sequence proceed as follows. At the i-th stage of a simple random sample without replacement both d_i and y_i are obtained by sampling uniformly from

$$\{b_1, ..., b_N\} \setminus \{d_1, ..., d_{i-1}\}.$$

It is easy to see that the above procedure will make $\{y_i\}_{i=1}^n$ tangent to $\{d_i\}_{i=1}^n$ with $\mathcal{F}_n = \sigma(d_1, ..., d_n)$. Moreover, $\{y_i\}_{i=1}^n$ is conditionally independent given $\mathcal{G} = \mathcal{F}_n$.

Let $d_0 = 0$ and for all $i \ge 1$,

$$d_i = \theta d_{i-1} + \epsilon_i \tag{1}$$

where $|\theta| < 1$ and ϵ_i is a sequence of i.i.d., mean zero random variable. Then, a conditionally independent sequence tangent to $\{d_i\}$ is $\{y_i\}$ where for each *i*,

$$y_i = \theta d_{i-1} + \tilde{\epsilon}_i \tag{2}$$

with $\tilde{\epsilon}_i$ an independent copy of ϵ_i .

э

Image: A matrix

The results to be introduced in this section are useful in comparing any two tangent sequences when one of them is conditionally independent.

Theorem (de la Peña [1])

Let $\{d_i\}_{i=1}^n$ be a sequence of positive variables. Let \mathcal{G} be a σ -field. Then, for any \mathcal{G} -conditionally independent sequence $\{y_i\}_{i=1}^n$, tangent to $\{d_i\}_{i=1}^n$, one has

$$\mathbb{E}\left(\prod_{i=1}^{n} d_{i}\right)^{\frac{1}{2}} \leq \left(\mathbb{E}\prod_{i=1}^{n} y_{i}\right)^{\frac{1}{2}}.$$
(3)

The above result is sharp: Take d_1, y_1 be nonnegative i.i.d. variables. $d_2 = d_1$ and $y_2 = d_1$. Then $\sqrt{d_1d_2} = d_1$ with mean $\mathbb{E}(d_1)$, and $y_1y_2 = y_1d_1$ has the expectation $\mathbb{E}(y_1)\mathbb{E}(d_1) = \mathbb{E}^2(d_1)$.

イロト イヨト イヨト ・

Let
$$\mathcal{F}_i = \sigma(d_1, ..., d_i; y_1, ..., y_i)$$
. It is easy to see that

$$\mathbb{E}\frac{\prod\limits_{i=1}^{n}d_{i}}{\prod\limits_{i=1}^{n}\mathbb{E}(d_{i}|\mathcal{F}_{i-1})}=1. \tag{4}$$

Since $\{y_i\}$ is tangent to $\{d_i\}$ and conditionally independent given \mathcal{G} ,

$$\mathbb{E}(x_i|\mathcal{F}_{i-1}) = \mathbb{E}(y_i|\mathcal{F}_{i-1}) = \mathbb{E}(y_i|\mathcal{G}).$$
(5)

< ∃⇒

2

$$\mathbb{E}\left(\prod_{i=1}^{n} d_{i}\right)^{\frac{1}{2}} = \mathbb{E}\left[\left(\prod_{i=1}^{n} d_{i}\right)^{\frac{1}{2}} \times \frac{\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)^{\frac{1}{2}}}{\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)^{\frac{1}{2}}}\right]$$
$$= \mathbb{E}\left[\frac{\left(\prod_{i=1}^{n} d_{i}\right)^{\frac{1}{2}}}{\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)^{\frac{1}{2}}}\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)^{\frac{1}{2}}}\right]$$
$$\leq \sqrt{\mathbb{E}\frac{\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)}{\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)}}\mathbb{E}\left(\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)}$$
$$(by \text{ Hölder's Inequality})$$
$$= \left(\mathbb{E}\prod_{i=1}^{n} \mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)^{\frac{1}{2}}$$

æ

イロト イヨト イヨト イヨト

$$\begin{split} & \left(\mathbb{E}\prod_{i=1}^{n}\mathbb{E}(d_{i}|\mathcal{F}_{i-1})\right)^{\frac{1}{2}} \\ &= \left(\mathbb{E}\left(\prod_{i=1}^{n}\mathbb{E}(y_{i}|\mathcal{G})\right)\right)^{\frac{1}{2}} \\ &= \left(\mathbb{E}\left(\mathbb{E}(\prod_{i=1}^{n}y_{i}|\mathcal{G})\right)\right)^{\frac{1}{2}} \\ &= \left(\mathbb{E}\prod_{i=1}^{n}y_{i}\right)^{\frac{1}{2}}. \end{split}$$

(since $\{y_i\}$ is \mathcal{G} -conditionally independent)

æ

A direct consequence of this theorem is the decoupling inequality for the moment generating functions of the sums.

Corollary

Let $\{d_i\}_{i=1}^n$ be a sequence of positive variables. Let \mathcal{G} be a σ -field. Then, for any \mathcal{G} -conditionally independent sequence $\{y_i\}_{i=1}^n$, tangent to $\{d_i\}_{i=1}^n$, one has, for all λ finite,

$$\mathbb{E}\exp\left(\lambda\sum_{i=1}^{n}d_{i}\right)\leq\sqrt{\mathbb{E}\exp\left(2\lambda\sum_{i=1}^{n}y_{i}\right)}.$$
(6)

Note that if y_i 's are mean zero, the $\sqrt{\cdot}$ symbol may be removed.

We can generalize this corollary to the following extension:

Corollary (de la Peña [2])

If y_i is a decoupled version of d_i , then for all r.v. g > 0 adapted to $\sigma\{d_1, ..., d_i\}$

$$\mathbb{E}\left[g\exp\left(\lambda\sum_{i=1}^{n}d_{i}\right)\right] \leq \sqrt{\mathbb{E}\left[g^{2}\exp\left(2\lambda\sum_{i=1}^{n}y_{i}\right)\right]}$$
(7)

This inequality can be used to develop self-normalized inequalities, and we will see an application of this in the establishment of the BERNSTEIN's inequality for self-normalized martingales.

- V. H. de la Peña. "A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement". In: *Annales de l'IHP Probabilités et statistiques*. Vol. 30. 2. 1994, pp. 197–211.
- [2] V. H. de la Peña. "A general class of exponential inequalities for martingales and ratios". In: *The Annals of Probability* 27.1 (1999), pp. 537–564.